Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35565600

ABSTRACT

A variety of long-term stress conditions may exist in fish cultivation, some of which are so severe that fish can no longer reestablish homeostasis. In teleost fish, the brain and gastrointestinal tract integrate signals that include the perception of stress factors regulating physiological responses, such as social stress by fish population density, where peripheral and central signals, such as peptide hormones, are the main regulators. Therefore, we proposed in this study to analyze the effect of different stock densities (SD) in the gene expression of brain neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP), together with the gastrointestinal peptide hormones leptin (Lep), vasointestinal peptide (VIP), and protachykinin-1 (Prk-1) in Salmo salar post-smolt. The coding sequence of S. salar VIP and Prk-1 precursors were firstly cloned and characterized. Then, the mRNA expression of these genes, together with the NPY, Lep, and CGRP genes, were evaluated in post-smolts kept at 11 Kg/m3, 20 Kg/m3, and 40 Kg/m3. At 14 days of culture, the brain CGRP and liver leptin mRNA levels increased three and tenfold in the post-smolt salmons kept at the highest SD, respectively. The high levels of leptin were kept during all the fish culture experiments. In addition, the highest expression of intestine VIP mRNA was obtained on Day 21 in the group of 40 Kg/m3 returning to baseline on Day 40. In terms of stress biochemical parameters, cortisol levels were increased in the 20 Kg/m3 and 40 Kg/m3 groups on Day 40 and were the highest in the 20 Kg/m3 group on Day 14. This study provides new insight into the gastrointestinal signals that could be affected by chronic stress induced by high stock density in fish farming. Thus, the expression of these peptide hormones could be used as molecular markers to improve production practices in fish aquaculture.

2.
Front Immunol ; 12: 666356, 2021.
Article in English | MEDLINE | ID: mdl-34054836

ABSTRACT

Type II interferon gamma (IFNγ) is a pleiotropic cytokine capable of modulating the innate and adaptive immune responses which has been widely characterized in several teleost families. In fish, IFNγ stimulates the expression of cytokines and chemokines associated with the pro-inflammatory response and enhances the production of nitrogen and oxygen reactive species in phagocytic cells. This work studied the effect of IFNγ on the expression of cell-surface markers on splenocytes of Atlantic salmon (Salmo salar). In vitro results showed that subpopulations of mononuclear splenocytes cultured for 15 days were capable of increasing gene expression and protein availability of cell-surface markers such as CD80/86, CD83 and MHC II, after being stimulated with recombinant IFNγ. These results were observed for subpopulations with characteristics associated with monocytes (51%), and features that could be related to lymphocytes (46.3%). In addition, a decrease in the expression of zbtb46 was detected in IFNγ-stimulated splenocytes. Finally, the expression of IFNγ and cell-surface markers was assessed in Atlantic salmon under field conditions. In vivo results showed that the expression of ifnγ increased simultaneously with the up-regulation of cd80/86, cd83 and mhcii during a natural outbreak of Piscirickettsia salmonis. Overall, the results obtained in this study allow us to propose IFNγ as a candidate molecule to stimulate the phenotypic progression of a small population of immune cells, which will increase antigen presenting cells markers. Thereby, modulatory strategies using IFNγ may generate a robust and coordinated immune response in fish against pathogens that affect aquaculture.


Subject(s)
Antigens, CD/metabolism , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Histocompatibility Antigens Class II/metabolism , Immunoglobulins/metabolism , Interferon-gamma/immunology , Membrane Glycoproteins/metabolism , Salmo salar/immunology , Spleen/immunology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , B7-1 Antigen/genetics , B7-1 Antigen/immunology , B7-2 Antigen/genetics , B7-2 Antigen/immunology , Biomarkers/metabolism , Fish Diseases/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Immunoglobulins/genetics , Immunoglobulins/immunology , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Piscirickettsia , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/veterinary , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism , CD83 Antigen
3.
PLoS One ; 8(11): e80369, 2013.
Article in English | MEDLINE | ID: mdl-24278278

ABSTRACT

The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein.


Subject(s)
Animal Feed , Lupinus/embryology , Salmon , Seeds , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Electrophoresis, Gel, Two-Dimensional , Lupinus/chemistry , Molecular Sequence Data , Plant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...